BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 51 (4), 1233—1234 (1978)

The Reactions of the (ZrO)₂P₂O₇-NiO System and the ZrP₂O₇-NiO System

Makio Kinoshita, Saburo Вава,* Akira Kishioka, and Michio Amagasa**

Department of Chemistry, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda-ku, Tokyo 102 (Received July 1, 1977)

Synopsis. The reaction between $(ZrO)_2P_2O_7$ and NiO at elevated temperatures up to 1340 °C yielded Ni₃(PO₄)₂ and ZrO₂ over the whole composition. The reaction between ZrP_2O_7 and NiO yielded NiO·4ZrO₂·3P₂O₅ and Ni₃(PO₄)₂ in the molar ratios up to equimolarity.

The ternary ZrO₂-CaO-P₂O₅ system was investigated by Bremser, 1) who reported the formation of CaZr(PO₄)₂ in the reaction of ZrP₂O₇ with CaCO₃. Recently, Sljukić et al. obtained the compound MIM2'IV(PO4)3 (M=alkali metal and M'=Zr, Ti, Th, and U) by reacting the quadrivalent metal oxide with the alkali metal phosphate in the presence of B2O3 flux and investigated these compounds crystallographically.2) They found that only NaTh2(PO4)3 among these compounds showed piezoelectricity.3) More recently, Allulli et al. prepared ZrM(PO₄)₂·4H₂O (M=Mn^{II}, Co^{II}, NiO^{II}, Cu^{II}, and Zn^{II}) by treating ionexchangeable ZrHNa(PO₄)₂·5H₂O with bivalent metal ions and obtained anhydrous phosphates MZr(PO₄)₂ by heating the resultant phosphates at higher temperature. These phosphates showed X-ray diffraction patterns similar to those of CaZr(PO₄)₂.4)

However, few studies have been reported concerning the reaction of $(ZrO)_2P_2O_7$ and ZrP_2O_7 with other metal oxides, so the investigation of these reactions will be of interest.

Experimental

Materials. ZrP₂O₇ was prepared by a method similar to that used by Amphlett et al.⁵) Zirconium phosphate gel was precipitated by adding 1.0 mol dm⁻³ H₃PO₄ to 0.4 mol dm⁻³ ZrO(NO₃)₂ solution containing 0.1 mol dm⁻³ HNO₃, the molar ratio of PO₄/Zr being 2.5. The gel was calcined at 1050 °C for 5 h. (ZrO)₂P₂O₇ was obtained by calcining ZrP₂O₇ at about 1600 °C for 1 h in a propane-oxygen furnace.

The calcined powder of ZrP_2O_7 and $(ZrO)_2P_2O_7$ was separately pulverized to particles under 74 μm in diameter with an agate ball mill. The purity of these materials was 99.5 wt% or more.

NiO was prepared by calcining nickel hydroxide, which was obtained by mixing 0.5 mol dm⁻³ Ni(NO₃)₂ solution with an excess of 0.5 mol dm⁻³ NaOH solution. The nickel hydroxide was calcined at 300 and 600 °C for 3 h.

Reactions at the Contact Surface of One-paired Tablets. The specimen powder was pressed into a tablet of 20 mm in diameter by about 5 mm in thickness under a pressure of 500 kg cm⁻². The NiO-tablet was placed on a (ZrO)₂P₂O₇-tablet and was heated for 24 h at 1200 °C in a SiC-furnace. After

these tablets were removed from the furnace, the reaction products in the surface layers of the tablets were scraped off and examined by X-ray powder diffractometry. ZrP₂O₇ and NiO tablets were similarly heated at 1000 °C for 24 h.

Reactions in the Mixtures of Various Concentrations. The mixture of (ZrO)₂P₂O₇ and NiO or that of ZrP₂O₇ and NiO was wet with acetone and thoughly mixed for 30 min in an agate mortar. Then the mixture was pressed under a pressure of 500 kg cm⁻² to form tablets weighing 0.3 g (10 mm in diameter and about 1.5 mm in thickness). The molar fraction of NiO in both systems was varied from 0.1 up to 0.9 at intervals of 0.1. The tablets were heated at 1200 °C for 24 h. The reaction products in the samples were determined by X-ray diffraction analysis.

Equimolar powder mixtures of both systems were subjected to DTA (heating rate: 10 °C/min, in air).

Isolation and Chemical Analysis of the Reaction Product Insoluble in HCl. The equimolar mixture of ZrP_2O_7 and NiO was heated at 1100 °C for 24 h and for an additional hour at 1400 °C. After Ni₃(PO₄)₂ was dissolved by boiling with 6 mol dm⁻³ HCl for 1 h, ZrO_2 in the insoluble residue was removed by flotation with 0.04 mol dm⁻³ sodium lauryl sulfate solution. The final residue thus obtained could not be identified from the known data. The P_2O_5 , ZrO_2 , and NiO in this unknown product were gravimetrically determined as $Mg_2P_2O_7$, ⁶⁾ ZrO_2 , ⁷⁾ and bis(dimethylglyoximato)nickel(II)⁸⁾ respectively.

Results

Products. In the products of all systems, Ni₃- $(PO_4)_2$ and monoclinic ZrO_2 were found. Nickel orthophosphate agreed with the compound existing in the NiO- P_2O_5 binary phase diagram.⁹⁾ The chemical formula of the unknown product was NiO· $4ZrO_2$ ·

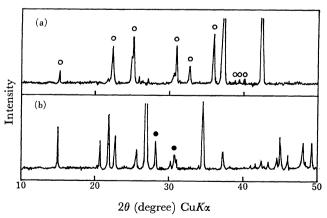


Fig. 1. X-Ray powder diffraction patterns of the surface layer of (a) NiO and (b) (ZrO)₂P₂O₇ tablet. (1200 °C). (a) ○: Ni₃(PO₄)₂, no mark: NiO, (b) ●: ZrO₂ (monoclinic), no mark: (ZrO)₂P₂O₇.

^{*} Present address: Torio Co., Ltd., Aobadai, Meguro-ku, Tokyo 153.

^{**} Present address: Zengyo, Fujisawa-shi, Kanagawa 251.

 $3P_2O_5$ or NiZr₄(PO₄)₆ (Found: NiO, 7.77; ZrO₂, 48.88; P_2O_5 , 43.77 wt %. Calcd: NiO, 7.52; ZrO₂, 49.60; P_2O_5 , 42.88 wt %). The color of this substance was purple-red. The X-ray powder diffraction pattern of this substance was quite different from that of NaZr₂-(PO₄)₃ or CaZr(PO₄)₂.¹⁰)

Reactions at the Contact Surface of One-paired Tablets. $(ZrO)_2P_2O_7$ -NiO System: X-Ray diffraction patterns of the surface layers of pair of NiO- $(ZrO)_2P_2O_7$ tablets are shown in Fig. 1. The Ni₃(PO₄)₂ was formed in the surface layer of the NiO-tablet and ZrO_2 in that of the ZrP_2O_7 -tabelt. Hence, the reaction in each tabelt can be represented by the following equations:

$$(ZrO)_2P_2O_7 \longrightarrow 2ZrO_2 + P_2O_5,$$
 (1)

$$3\text{NiO} + \text{P}_2\text{O}_5 \longrightarrow \text{Ni}_3(\text{PO}_4)_2.$$
 (2)

This result is similar to that for the MgO-Mg₂P₂O₇ system reported by Jagisch and Bengtson, that is, Mg₃(PO₄)₂ was formed in the surface layer of the MgO-tablet by the cross diffusion of P₂O₅.¹¹)

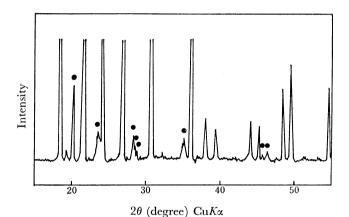


Fig. 2. X-ray diffraction pattern of the surface layer of ZrP₂O₇ tablet. (1000 °C).

 \bullet : NiO·4ZrO₂·3P₂O₅, no mark: ZrP₂O₇.

 ZrP_2O_7 -NiO System: X-Ray diffraction pattern of the surface layer of the ZrP_2O_7 -tablet is shown in Fig. 2. In the surface layer of the NiO-tablet, Ni₃(PO₄)₂ was formed as shown in Fig. 1(a). The NiO·4ZrO₂· $3P_2O_5$ was formed in the surface layer of the ZrP_2O_7 -tablet. Accordingly, this reaction proceeded via interdiffusion. The reaction in each tablet can be represented by the following equations:

$$4ZrP_2O_7 + NiO \longrightarrow NiO \cdot 4ZrO_2 \cdot 3P_2O_5 + P_2O_5, \quad (3)$$

$$3 \text{NiO} + P_2 O_5 \longrightarrow \text{Ni}_3 (PO_4)_2.$$
 (4)

Reactions in the Mixtures of Various Concentrations.

In the $(ZrO)_2P_2O_7$ -NiO system, $Ni_3(PO_4)_2$ and ZrO_2 were formed over the whole composition, although the maximum in the formation of these products were found at the $NiO/(ZrO)_2P_2O_7$ ratio of 3. In the ZrP_2O_7 -NiO system, the formation of $NiO\cdot 4ZrO_2\cdot 3P_2O_5$ increased with the increasing molar ratio up to unity. When the ratio of NiO/ZrP_2O_7 exceeded one, $NiO\cdot 4ZrO_2\cdot 3P_2O_5$ was not formed, but $Ni_3(PO_4)_2$ and ZrO_2 were formed. In the reaction of the equimolar mixture, $NiO\cdot 4ZrO_2\cdot 3P_2O_5/Ni_3(PO_4)_2$ was nearly equal to unity. Accordingly, the reaction can be represented by the following equation:

$$4ZrP_2O_7 + 4NiO \longrightarrow$$

$$NiO \cdot 4ZrO_2 \cdot 3P_2O_5 + Ni_3(PO_4)_2$$
 (5)

DTA thermograms of both systems of the equimolar mixture showed a broad exothermic peak ranging between 800 and 1150 °C and a sharp endothermic peak at 1340 °C. The former was attributed to the formation of certain reaction products and the latter to the elutectic point⁹⁾ of Ni₃(PO₄)₂ and NiO. A small endothermic peak at 300 °C in the ZrP₂O₇-NiO system was due to the structural conversion¹²⁾ of ZrP₂O₇ from cubic to tetragonal.

References

- 1) A. H. Bremser, Ph. D. Thesis, University of Illinois, Urbana, 1967.
- 2) M. Šljukič, B. Matkovič, B. Prodič, and S. Ščavničar, Croat. Chem. Acta, 39, 145 (1967).
- 3) M. Topič, B. Prodič, and M. Šljukič, *Czech. J. Phys.* **19**, 1295 (1969).
- 4) S. Allulli, C. Ferragina, A. L. Ginestra, M. A.Massucci, N. Tomassini, and A. A. G. Tomlinson, *J. Chem. Soc. Dalton Trans.*, **1976**, 2115.
- 5) C. B. Amphlett, L. A. McDonald, and M. J. Redman, J. Inorg. Nucl. Chem., 6, 220 (1958).
- 6) M. Ishibashi, "Teiryo Bunseki Jikkenho," Fuzanbo, Tokyo (1962), pp. 134—136.
- 7) G. E. F. Lundell and H. B. Knowles, J. Am. Chem. Soc., 41, 1801 (1919).
- 8) S. Takagi, "Teiryo Bunseki No Jikken To Keisan," Nanjyo Shoten, Vol. 1, Tokyo (1949), pp. 224—246.
 - 9) J. F. Saver, Trans, Brit. Ceram. Soc., 65, 191 (1966).
- 10) C. Bettinli, A. La Ginestra, and M. Valigi, Atti Acc. Nazl. Lincei, Classe Sci. Fis. Mat. Nat., 33, 472 (1962).
- 11) R. Jagisch and B. Bengtson, Arkiv Kemi, Mineral. Geol., 22 A. 1 (1945).
- 12) D. E. Harrison, H. A. Mckinstry, and F. H. Hummel, J. Am. Ceram. Soc., 37, 277 (1954).